The Fast Fourier Transform (FFT) is a fast method for evaluating the complex exponential sum,

$$
X_{n}=\sum_{j=0}^{N-1} x_{k} W^{n k} \quad n=0 \ldots N-1
$$

in $O(n \lg n)$ operations where $W=e^{-2 \pi i / N}$ is an nth root of unity and the symbol i denotes $\sqrt{-1}$ and N is a power of 2 : $N=2^{g}$.

Express the summation indices in binary,

$$
\begin{aligned}
& n=2^{g-1} n_{g-1}+2^{g-2} n_{g-2}+\ldots+n_{0} \\
& k=2^{g-1} k_{g-1}+2^{g-2} k_{g-2}+\ldots+k_{0}
\end{aligned}
$$

to expand the sum into

$$
X\left(n_{g-1}, n_{g-2}, \ldots, n_{0}\right)=\sum_{k_{0}=0}^{1} \sum_{k_{1}=0}^{1} \ldots \sum_{k_{g-1}=0}^{1} x\left(k_{g-1}, k_{g-2}, \ldots, k_{0}\right) W^{n k}
$$

Expand out the complex exponential term

$$
\begin{array}{r}
W^{n k}=W^{\left(2^{g-1} n_{g-1}+\ldots+n_{0}\right)\left(2^{g-1} k_{g-1}\right)} \times \\
W^{\left(2^{g-1} n_{g-1}+\ldots+n_{0}\right)\left(2^{g-2} k_{g-2}\right)} \times \ldots \times \\
W^{\left(2^{g-1} n_{g-1}+\ldots+n_{0}\right)\left(k_{0}\right)}
\end{array}
$$

Simplify using

$$
W^{\left(m 2^{g}\right)}=W^{m N}=\left(W^{N}\right)^{m}=1^{m}=1
$$

using

$$
W^{N}=\left(e^{2 \pi i / N}\right)^{N}=e^{2 \pi i}=1
$$

which gives us,

$$
W^{n k}=W^{\left(n_{0}\right)\left(2^{g-1} k_{g-1}\right)} W^{\left(2 n_{1}+n_{0}\right)\left(2^{g-2} k_{g-2}\right)} \ldots W^{\left(2^{g-1} n_{g-1}+\ldots+n_{0}\right)\left(k_{0}\right)}
$$

Substitute back into the sum to give

$$
\sum_{k_{0}=0}^{1} \sum_{k_{1}=0}^{1} \ldots \sum_{k_{g-1}=0}^{1} x\left(k_{g-1}, k_{g-2}, \ldots, k_{0}\right) W^{\left(n_{0}\right)\left(2^{g-1} k_{g-1}\right)} W^{\left(2 n_{1}+n_{0}\right)\left(2^{g-2} k_{g-2}\right)} W^{\left(2^{g-1} n_{g-1}+\ldots+n_{0}\right)\left(k_{0}\right)}
$$

